
7C.2 EXPERIENCE WITH AN ENHANCED NETCDF DATA MODEL AND INTERFACE FOR
 SCIENTIFIC DATA ACCESS

Edward Hartnett*, and R. K. Rew
UCAR, Boulder, CO

1 INTRODUCTION TO NETCDF AND THE NETCDF-4
PROJECT

The purpose of the Network Common Data Form
(netCDF) interface is to support the creation, efficient
access, and sharing of data in a form that is self-
describing, portable, compact, extendible, and
archivable. Version 3 of netCDF is widely used in
atmospheric and ocean sciences due to its simplicity.
NetCDF version 4 has been designed to address
limitations of netCDF version 3 while preserving useful
forms of compatibility with existing application software
and data archives.

In version 4.0 (out in beta release at the time of this
writing) netCDF adds the use of HDF5, another popular
data format and set of libraries, as a storage layer. Many
of the advanced features supported by the HDF5 format
become available to netCDF users with the 4.0 release,
including an expanded data model, compression,
chunking, parallel I/O, multiple unlimited dimensions,
groups, and user defined types.

The netCDF-4 release fully maintains backward format
and code compatibility. That is, all existing netCDF files
remain readable and writable, and existing netCDF
applications may upgrade to netCDF-4 without source
code changes or loss of functionality. NetCDF-4 adds a
new HDF5-based binary format to formats already
available.

NetCDF-4 represents an addition, not a replacement or
successor format. Some users will use this new format
for the extra features it provides or for performance
benefits. Others will continue to use the existing netCDF
binary formats.

1.1 Introduction to NetCDF

NetCDF consists of:

• a conceptual data model

• a set of binary data formats

• a set of APIs for C/Fortran/Java

 *Corresponding author address: Ed Hartnett,
Unidata/UCAR, PO Box 3000, Boulder, CO 80307, email:
ed@unidata.ucar.edu. The National Science Foundation
is Unidata’s primary sponsor.

The NetCDF-4.0 release expands all three of these
aspects of netCDF. In this paper (and netCDF
documentation) the word "classic" is used to refer to the
data model and binary format prior to netCDF-4, and
"netCDF-4" is used to refer to the new data model,
format, and API additions.

1.1.1 The Data Model

By "data model" we mean the way scientific data is
conceptually modeled with a set of objects, operations,
and rules that determine how the data is represented and
accessed.

The classic model of netCDF represents data as a set of
multi-dimensional arrays, with sharable dimensions, and
additional metadata attached to individual arrays or the
entire file. In netCDF terminology, the data arrays are
variables, which may share dimensions, and may have
attached attributes. Attributes may also be attached to
the file as a whole. One dimension may be of unlimited
length, so data may be efficiently appended to variables
along that dimension. Variables and attributes have one
of six primitive data types: char, byte, short, int, float, or
double.

NetCDF-4 expands this model to include elements from
the HDF5 data model, including hierarchical grouping,
additional primitive data types, and user defined data
types. (See figure 1).

The new data model is a superset of the existing data
model. With the addition of a nameless "root group" in
every netCDF file, the classic model fits within the
netCDF-4 model.

1.1.2 The Binary Formats

By "binary formats" we mean the layout of bytes on the
disk.

NetCDF-4.0 supports three binary data formats:

1. classic – the original netCDF binary data format

2. 64-bit offset – the variant format which allows for
much larger data files

3. netCDF-4 – the HDF5-based format, with
netCDF-specific constraints and conventions.

Additionally there is one "virtual" format: netCDF-4

mailto:russ@unidata.ucar.edu

classic model. This format is obtained by passing the
classic model flag when creating the netCDF-4 data file.
Such a file will use the netCDF-4 format restricted to the
classic netCDF data model. Such files can be accessed
by existing programs that are linked to the netCDF-4
library.

Figure 1: The netCDF-4 data model. Objects in black
are in the netCDF classic data model. Objects in red
have been added to the classic model in netCDF-4.

1.1.3 The Programming APIs and Libraries

By "programming APIs and Libraries" we mean the

software that makes netCDF available in various
computer programming languages.

The language APIs are implemented in two distinct core
libraries: the original C library and the independent Java
library. The Fortran and C++ APIs call the C library
functions. All other APIs not in a Java environment are
based on the C library.

NetCDF-4 has been fully implemented in the C library;
implementation in the Java library is underway.

1.2 NetCDF Library Architecture

NetCDF-4 is a straightforward extension of the existing
netCDF code base. All netCDF classic and 64-bit offset
functions are handled by the netCDF-3 core library, with
an additional netCDF-4 library handling netCDF-4 files.

The netCDF-4.0 release includes the entire code base of
the current 3.6.2 release, plus changes since that
release. A 3.x variant of the release will continue to be
available to build only the netCDF 3.x release. The 3.x
release is equivalent to the 4.x release without the --
enable-netcdf-4 option to configure.

1.3 Getting, Building, and Using NetCDF

The netCDF-4 library is available from the netCDF web
site as a beta release. It depends on the zlib library and
the HDF5-1.8.0 library (both are also available from the
netCDF web site). HDF5 must be built to use zlib (by
specifying the --with-zlib option to HDF5's configure
script).

As of the time of this writing, the HDF5-1.8.0 release is
available in beta release. Since netCDF-4 relies on HDF5
1.8.0, it must stay in beta release until the full HDF5 1.8.0
release.

NetCDF is built by running the configure script, and then
running make to build the library. There are many
configure options; the --help option provides the full list.
The following options are likely to be of interest to many
users:

• --enable-netcdf-4 – without this option the latest
code from the version 3.6.x series is built.

• --with-hdf5=/location – specifies the location of
the HDF5 1.8.0 library.

• --enable-benchmarks – builds (and tests) the
benchmarking program bm_file.c, used to
gather performance data for the graphs in this
paper.

• --enable-parallel-tests – turns on parallel tests if
a parallel build is taking place. Note that tests

Attribute
name: String
type: DataType
values: 1D array

Variable
name: String
shape: Dimension[]
type: DataType
array: read(), …

File
location: Filename
create(), open(), …

PrimitiveType
char
byte
short
int
int64
float
double
unsigned byte
unsigned short
unsigned int
unsigned int64
string

UserDefinedType
typename: String

Opaque

Enum

Compound

Variable Len

Group
name: String

Dimension
name: String
length: int
isUnlimited()

DataType

are run with mpiexec.

For parallel I/O builds, the MPI library must be available
on the target platform, and HDF5 must be built with the --
enable-parallel option to configure. NetCDF will
automatically detect an HDF5 build for parallel and will
build with parallel I/O capabilities in that case.

Users should always run "make check" and should report
any build or test problems to:

support-netcdf@unidata.ucar.edu.

1.4 Running the Benchmarks

The program used to benchmark netCDF is bm_file.c, in
the nc_test4 directory of the netCDF distribution. The
program is run from the command line, and outputs the
results of a benchmarking run in a comma separated
value (csv) format suitable for use in a spreadsheet for
analysis of the benchmarking results.

The bm_file.c program may be used on any netCDF file
that conforms to the classic model. The program copies
any netCDF file into another netCDF file of user-specified
binary format. That is, it can convert a netCDF classic
format file to netCDF-4, and vice versa. The program
uses the gettimeofday() function to time reads and writes.

The data are read and written one slice at a time, with the
slice being a user-specified fraction of the extent of the
slowest varying dimension, and the full extent for all other
dimensions. (An exception is made for 1-dimensional
variables — the slice is one-tenth of the maximum size).

Most of the benchmarks in this paper were run with
gridded radar 2D data on an x686 Linux workstation. The
sample datasets used are available on the Unidata FTP
site: ftp://ftp.unidata.ucar.edu/pub/netcdf/sample_data

The benchmarks are run by scripts in the nc_test4
directory of the netCDF distribution. The scripts clear the
system's file caches by running a platform-specific script
in the nc_test4 directory named clear_cache.sh.

2 EARLY EXPERIENCE WITH NETCDF4

2.1 Experiences Reported by Users

We thank the netCDF-4 user community for their input
and contributions. Below we list early experiences of
some groups with netCDF-4.0.

2.2.1 NCO Experience

The netCDF Operators, or NCO, are a suite of file

operators that manipulate netCDF data files.

The NCO package, when built from source, may be built
with netCDF-4 to support reading and writing netCDF-4
data in the classic netCDF model. NCO has an extensive
set of tests that run successfully for netCDF-4 files, with
the exception of some tests relating to the renaming of
netCDF variables. NCO can also handle the new
netCDF-4 primitive numeric types.

The NCO tools can reduce the size of netCDF files by
scaling the data. This is a lossy compression scheme in
which the data are reduced in precision and scaled. NCO
also supports the creation of netCDF-4 files with lossless
zlib compression. NCO developers report that a
compression of 30% to 60% is typical on scientific data
with zlib compression, and up to 80% when scaling and
compression are combined; see Zender (2007).

2.2.2 Writing Subsections of Large Variables

A dramatic example of the benefits of chunking storage
has been provided by a user writing 64x64x32
subsections of 256x256x64 variables in modeling code.
With netCDF-3, this involves writing 64x64 non-
contiguous blocks of 32 values each, and the I/O portion
of the resulting program runs at a rate of only 0.39 MB/s.
With the use of chunking to change non-contiguous
writes into contiguous writes, an I/O speed of 51 MB/s is
achieved, making the I/O portion of the code run in 27
seconds instead of 56 minutes.

3 RECOMMENDATIONS FOR NETCDF USERS

With the development and imminent release of
netCDF-4, a richer but more complex data model will be
available. Some of the new features in netCDF-4 provide
better ways to represent observational data, new ways to
represent metadata, and ways to make data more self-
describing for communities outside the traditional
atmospheric, ocean, and climate modeling communities.
The backward compatibility with existing data and
software will allow an incremental transition, using only
features that provide clear benefits. In some cases, there
are significant performance benefits to using existing
software with the new format or to writing data using the
classic data model and new format for performance
benefits of programs that will later access the data.

3.1 Using NetCDF4 with the Classic Data Model

NetCDF-4 brings many new features to users within the
classic netCDF model. By confining themselves to the
classic model, data producers ensure that their data files
can be read by any existing netCDF software which has
been relinked with the netCDF-4 library.

For example, the use of a compound type in a file
requires the netCDF-4 data model, but reading
compressed data does not.

One advantage of only using features that conform to the
classic data model is that existing code that reads,
analyzes, or visualizes the data will continue to work. No
code changes are needed for such programs, and they
can transparently use netCDF-4 features such as large
file and object sizes, compression, control of endianness,
reading chunked data, and parallel I/O, without
modification of existing code.

For example, data producers can use zlib compression
when writing out data files. Since this is transparent to
the reader, the programs that read the data do not need
to be modified to expand the data. That happens without
any help from the reader.

In many cases, users may wish to use netCDF-4 data
files without adding any of the model-expanding features.
As a convenience netCDF-4 includes the
CLASSIC_MODEL flag. When a file is created with this
flag, the rules of the classic netCDF model are strictly
enforced in that file. This remains a property of the file,
and the file may never contain user-defined types,
groups, or any other objects that are not part of the
classic netCDF data model.

3.1.1 Large File and Object Size

NetCDF-4 files may contain larger objects than classic
netCDF or even 64-bit offset netCDF files. For example,
variables that do not use the unlimited dimension cannot
be larger than about 4 GiBytes in 64-bit offset netCDF
files, but there is no such limit with netCDF-4 files on 64-
bit platforms.

3.1.2 Compression and Shuffle Filters

NetCDF-4 uses the zlib library to allow data to be
compressed and uncompressed as it is written and read.
The data writer must set the appropriate flags, and the
data will be compressed as it is written. Data readers do
not have to be aware that the data are compressed,
because the expansion of the data as it read is
completely transparent.

The shuffle filter does not compress the data, but may
assist with the compression of integer data. The shuffle
algorithm changes the byte order in the data stream;
when used with integers that are all close together, this
results in a better compression ratio. There is no benefit
from using the shuffle filter without also using
compression.

Data compression and shuffling may be set on a per-
variable basis. That is, the zlib compression flag (from 0,

no compression, to 9, maximum compression) can be set
independently for each variable. In our tests we notice
that setting the deflate higher than one takes more time,
but has little benefit.

3.1.3 Control of Endianness

In netCDF classic format files (and 64-bit offset format
files), numeric data are stored in big-endian format. On
little-endian platforms, netCDF is converted to big-endian
when the data are written, and converted back to little-
endian when read from the file.

In netCDF-4 files, the user has direct control over the
endianness of the each data variable. The default is to
write the data in the native endianness of the machine.
This is useful in cases where the data are to be read on
the same machine, or machines of similar architecture.

However, in some cases the data may be produced on a
machine of one native endianness, and read on a
machine of the other endianness. In these cases, the
data writer may wish to optimize for the reader by
explicitly setting the endianness of the variable.

In our tests, the endianness of the data only affected read
rates significantly when disk caches were in full use, and
the data were read from the disk cache. In this case, data
with a native endianness were read noticeably faster.
However, when disks caches were cleared, the
endianness of the data does not affect the read rate
much. Apparently the disk speed is slow enough without
caching that the CPU has plenty of time to swap the
bytes of the data while waiting for the disk. When the
data are available in cache, the I/O rate is much faster,
and then the cost of the byte swapping becomes
noticeable.

For high-performance applications in which netCDF file
reading is a bottleneck and access patterns allow disk
caching to be used effectively, users should consider
writing variables in the file with the endianness of the
target platform. Higher-performance disk systems may
also serve the data fast enough for its endianness to
matter.

3.1.4 Chunking

NetCDF-4 files may be written as chunked data, each
chunk representing a multidimensional tile of the same
size. That is, the data are written as chunks of a given
size, specified by the user when the variable is created
and before any data is written. Compressed variables
must be chunked, and each chunk is compressed or
uncompressed independently.

Chunking has important performance ramifications. Both
file size and I/O rates are affected by chunk sizes, and
choosing very small chunk sizes can be disastrous for
performance. The following graph shows the file sizes of
the radar 2D sample data for a variety of chunk sizes.

Figure 2: The read rate in MB/s for reading the same
data, stored in netCDF-4 files of varying chunk size.
As can be seen, the chunk sizes can have a large
effect on the read performance. In this case, using
1001 x 2001 chunk sizes is the only setting that
performed better than netCDF classic (shown in red).

Chunk sizes should be chosen to yield an amount of data
that can be comfortably handled by disk buffers. Chunk
sizes that are too small or too large result in poor
performance or overly large data files. Since
compression and expansion work on individual chunks,
specifying too large a chunk size may cause a large
portion of a file to be uncompressed when reading only a
small subset of the data.

One heuristic for data providers to use is square chunks
about one megabyte in size. Chunk sizes should also be
chosen so that a whole number multiple of the chunk
completely fills the dimension.

Users will also experience better performance by using
contiguous storage for variables of fixed size, if data are
accessed sequentially.

3.1.5 Parallel I/O

NetCDF-4 supports parallel I/O on platforms that support
MPI (the Message Passing library). Parallel I/O in
netCDF-4 only works on netCDF-4 data files. Users who
wish to user parallel I/O with classic or 64-bit offset
netCDF files must use some other solution such as
pnetCDF, see Li (2003).

NetCDF-4 users may use special functions to open or
create files, to which they can write data in parallel, and
from which they can read data in parallel. Parallel data
reads can result in significant performance improvements
in some high-performance computing applications.
Equivalent wrapper functions for the Fortran APIs are
provided in the netCDF distribution.

Recent testing on TeraGrid machines showed clear

performance gains with parallel I/O, on parallel file
systems with low processor counts.

3.2 Using New Features of the NetCDF-4 Data Model

The NetCDF-4 data model supports the Unidata
Common Data Model, an ongoing effort to identify a
common subset of netCDF, HDF5, and OPeNDAP data
model features to improve interoperability for data
providers and users.

It is not necessary to use new model features to benefit
from using netCDF-4, but they allow a more complete
representation of the intent of data providers and of the
meaning in complex data structures, sometimes with
performance benefits. However, once these features are
used, it is no longer possible to read the data with
existing netCDF-3 software, even relinked to the
netCDF-4 software library. The reading software must be
modified to handle the additional model constructs. Since
these features are only being introduced in netCDF-4, it
will take some time before netCDF applications can be
modified to handle the new features. Thus users are
cautioned against using these features until software that
will be used to access the data has been adapted to
handle them.

3.2.1 Multiple Unlimited Dimensions

In the netCDF classic model, only one dimension can be
unlimited. This restriction is a direct result of the netCDF
classic binary format, which appends slices along the
unlimited dimension to the end of the file as the user
writes them.

Data chunking allows data to be added in a more flexible
way. Data slices are not simply appended to the end of
the file — they may be added as new chunks along more
than one dimension of a multidimensional variable. This
allows data to grow along any number of unlimited
dimensions. For example, a dataset representing
observations at an indeterminate number of stations and
times may allow data to be added for both new times and
new observing stations, without copying or restructuring
data already in the dataset.

3.2.2 Hierarchical Groups

NetCDF-4 allows variables, dimensions, and global
attributes to be organized into hierarchical groups, like
the directories and sub-directories of a computer file
system. Every netCDF file contains an unnamed root
group. If no subgroups are created, all operations take
place in the root group. Thus the netCDF classic model is
compatible with the group concept — in a netCDF classic
file, there is only a root group.

In netCDF-4 files, named subgroups can be created and
nested to any level. The groups in a file each have their
own set of variables, dimensions, group attributes,
subgroups, and user-defined types. In a file with multiple

groups, there may be more than one variable or
dimension with the same name, since each group
provides a scope for names. Groups also provide another
way to use multiple unlimited dimensions, because each
group may have its own unlimited dimensions.

Potential uses for groups include applications that
require:

• containers to "factor out" common information,
such as for regions, grids, or model ensembles

• organization for a large number of variables

• multiple name scopes, so that data objects in
different groups may use the same names

• large-granularity nested hierarchies
• containers for storing tightly coupled data, for

example instrument calibrations or metadata for
a specific standard

3.2.3 New Primitive Types

NetCDF-4 makes a distinction between primitive types
and user-defined types. Primitive types are those which
are intrinsic to netCDF — they are the built-in data types.
The netCDF classic data model includes six primitive
types: a character type, three integer types, and two
floating point types. In netCDF-4, unsigned and 64-bit
integer types are added, as is a new string type.

Users should take care using the unsigned integer types,
especially the unsigned 64-bit integer type. Neither
Fortran 90 nor Java has a 64-bit unsigned type. (They
can read such data, but only see it as signed 64-bit
integers).

The string type allows compact storage of arrays of
variable length string values. Strings are a special case
of the variable length arrays described below, but they
are built-in types, which do not have to be defined by the
user. As with other variable length types, special care
must be taken in using C-based interfaces to free storage
that the library allocates when string data are read.

3.2.4 User Defined Types

The netCDF-4 data model makes available several kinds
of user-defined types. Each type has a name and a
definition. Named types are contained in groups, but may
be referenced in type definitions in other groups. Both
variables and attributes may be declared to be of user-
defined types, which allows a natural extension of
conventions that require some variable attributes to be of
the same type as the associated variable.

User-defined types can express important metadata
relationships, provide programming convenience, and
represent nested data structures. Specific uses include:

• Representing vector quantities like wind
• Bundling multiple in situ observations together

(profiles, soundings)

• Modeling relational database tables
• Representing C structures portably

User defined types are constructed with calls to newly
added functions. User-defined types may be nested
inside other user-defined types, and the nesting may be
arbitrarily deep. (This may make the reading program
arbitrarily complex, if not done with care).

The four classes of user-defined types are:

• compound types – like structures in C, these
types consist of other types, grouped together
by the user. Compound types can contain any of
the other user defined types, as well as any
primitive type.

• variable length types – allow efficient storage
and retrieval of ragged arrays of data. Variable
length types are built around a base type, that
is, they are variable length arrays of a certain
type. That type may be any primitive or user-
defined type, including another variable length
type.

• enum types – like enumerations in C, these are
integer types with an associated symbolic name,
stored as an integer in the data file.

• opaque types – named types of user-defined
size, which will be accessed atomically by the
netCDF-4 libraries.

With little experience using user-defined types,
conventions are not yet established for their use. A draft
white paper, “Developing Conventions for NetCDF-4,”
Rew (2007) is available from the netCDF web site
discussing issues in developing CF conventions for
netCDF-4. The white paper recommends use of the
classic netCDF data model with the netCDF-4 format to
obtain benefits for both writers and readers, without
breaking backwards compatibility for existing applications
that read netCDF data.

4 FUTURE PLANS FOR NETCDF

NetCDF-4.0 will be released a short time after the official
HDF5-1.8.0 release. The most recent netCDF-4.0 beta
release is available on the netCDF home page, as is the
daily snapshot release, which is built every night by the
automatic build/test system.

Work has begun on the next versions of netCDF, 3.7 and
4.1. These versions will add the ability to work as an
OPeNDAP client. This will allow netCDF users to access
files remotely, connecting to OPeNDAP servers over the
Internet.

Performance measurement and improvements will
continue, as part of continued netCDF-4 development.
As an open-software project, we happily accept user
contributed experience and code. If you have interesting
measurements of netCDF-3 versus netCDF-4

performance on real applications, please send email to
the netCDF support address:

support-netcdf@unidata.ucar.edu.

ACKNOWLEDGMENTS

NetCDF was developed and is maintained at Unidata,
funded primarily by the National Science Foundation, and
managed by the University Corporation for Atmospheric
Research (UCAR) Office of Programs (UOP).

NetCDF-4 was developed with a grant from the NASA
Earth Science Technology Office under NASA award
AIST-02-0071.

We would also like to acknowledge collaboration and
development efforts of Mike Folk, Quincey Koziol, Robert
E. McGrath, Elena Pourmal, and Muqun (Kent) Yang at
The HDF5 Group, and Brian Kelly and Mike Schmidt at
Unidata.

REFERENCES

HDF5 I/O Performance HDF5 I/O Performance, HDF and

HDF-EOS Workshop VI, December 5, 2002,
http://hdfeos.org/workshops/ws06/presentations/Pourmal/
HDF5_IO_Perf.pdf

Li, J., W. Liao, A. Choudhary, R. Ross, R. Thakur, W.
Gropp, R. Latham, A. Siegel, B. Gallagher, M. Zingale,
2003: Parallel netCDF: A High-Performance ScientificI/O
Interface. SC2003, Phoenix, Arizona, ACM.

Zender, C., NCO Users Guide

http://nco.sourceforge.net/nco.html

Russ Rew*, Ed Hartnett, and John Caron, 2006:
NETCDF-4: SOFTWARE IMPLEMENTING AN
ENHANCED DATA MODEL FOR THE GEOSCIENCES,
AMS

Rew, R., 2007, Developing Conventions for NetCDF-4,
http://www.unidata.ucar.edu/software/netcdf/docs/nc4-
conventions.html

http://www.unidata.ucar.edu/software/netcdf/papers/2006-ams.pdf
http://www.unidata.ucar.edu/software/netcdf/papers/2006-ams.pdf
http://www-unix.mcs.anl.gov/parallel-netcdf/pnetcdf-sc2003.pdf
http://www-unix.mcs.anl.gov/parallel-netcdf/pnetcdf-sc2003.pdf
http://hdfeos.org/workshops/ws06/presentations/Pourmal/HDF5_IO_Perf.pdf

	7C.2 EXPERIENCE WITH AN ENHANCED NETCDF DATA MODEL AND INTERFACE FOR
	 SCIENTIFIC DATA ACCESS
	1 INTRODUCTION TO NETCDF AND THE NETCDF-4 PROJECT
	1.1 Introduction to NetCDF
	1.1.1 The Data Model
	1.1.2 The Binary Formats
	1.1.3 The Programming APIs and Libraries
	1.2 NetCDF Library Architecture
	1.3 Getting, Building, and Using NetCDF
	1.4 Running the Benchmarks

	2 Early Experience with NetCDF-4
	2.1 Experiences Reported by Users
	
2.2.2 Writing Subsections of Large Variables

	3 Recommendations for NetCDF Users
	3.1 Using NetCDF-4 with the Classic Data Model
	3.1.1 Large File and Object Size
	3.1.2 Compression and Shuffle Filters
	3.1.3 Control of Endianness
	3.1.4 Chunking
	3.1.5 Parallel I/O
	3.2 Using New Features of the NetCDF-4 Data Model
	3.2.1 Multiple Unlimited Dimensions
	3.2.2 Hierarchical Groups
	3.2.3 New Primitive Types
	3.2.4 User Defined Types

	4 Future Plans for NetCDF
	Acknowledgments
	References

