
1

1

Writing NetCDF Files: Formats,
Models, Conventions, and Best

Practices

Russ Rew, UCAR Unidata
June 28, 2007

2

Overview

• Formats, conventions, and models
• NetCDF-3 limitations
• NetCDF-4 features: examples and

potential uses
• Compatibility issues
• Conventions issues
• Recommendations

2

3

Data Abstraction Levels:
Formats, Conventions, and Models

Data
Conventions

Unidata
Obs

netCDF
User GuideCF-1.0 ARGO

Data
Models

netCDF
classic netCDF/CF CDM

(netCDF-4) HDF5

Data
 Formats

HDF-EOS netCDF classic HDF5
netCDF-4

BUFR
GRIB1 GRIB2

CDL

4

NetCDF Formats

2005 64-bit offset variant

1988 “classic” format CDL (text-based)

2002 NcML (XML-based)

2007 netCDF-4 (HDF5-based)

3

5

Commitment to Backward Compatibility
Because preserving access to archived data for
future generations is sacrosanctsacrosanct :

 Data access: New netCDF software will provide read
and write access to all earlier forms of netCDF data.

 APIs and programs: Existing C, Fortran, and Java
netCDF programs will be supported by new netCDF
software (possibly after recompiling).

 Commitment: Future versions of netCDF software will
continue to support data access, API, and conventions
compatibility.

6

Purpose of Data Conventions

• To capture meaning in data
• To make files self-describing
• To faithfully represent intent of data provider
• To foster interoperability
• To add value to formats

– Raise level of abstraction (e.g. adding coordinate
systems)

– Customize format for discipline or community (e.g.
climate modeling)

Unidata
Obs

netCDF
User GuideCF-1.0 ARGO …

4

7

NetCDF conventions

• Users Guide conventions:
– Simple coordinate variables (same name for dimension and

variable)
– Common attributes: units, long_name, valid_range,

scale_factor, add_offset, _FillValue, history,
Conventions, …

– Not just for earth-science data
• Followed by lots of community conventions:

COARDS, GDT, NCAR-RAF, ARGO, AMBER,
PMEL-EPIC, NODC, …, CF

• Unidata Obs Conventions for netCDF-3 (supported
by Java interface)

• Climate and Forecast conventions (CF) endorsed by
Unidata (2005)

• Unidata committed to development of libcf (2006)

8

CF Conventions (cfconventions.org)

• Clear, comprehensive, consistent (thanks to Eaton,
Gregory, Drach, Taylor, Hankin)

• standard_name attribute for identifying quantities,
comparison of variables from different sources

• Coordinate systems support
• Grid cell bounds and measures
• Acceptance by community: IPCC AR4 archive, …
• Governance and stewardship: GO-ESSP, BADC,

PCMDI, WCRP/WGCM (pending)

5

9

CF Conventions Issues

• cf-metadata mailing list
• cfconventions.org site: documents, forums,

wiki, Trac system
• GO-ESSP annual meetings
• Recent CF issues and proposed CF extensions

– Structured grids, staggered grids, subgrids, curvilinear
coordinates (Balaji)

– Unstructured grids (Gross)
– Forecast time axis (Gregory, Caron)
– Means and subgrid variation and anomaly modifier for

standard names
– Additions needed for observational data
– NetCDF-4 issues
– Needs for IPCC AR5 model output archives

10

Scientific Data Models

• Tabular data
– Relational model
– Tuples, types, queries, operations, normalization, integrity constraints

• Geographic data
– GIS models
– Features and coverages, observations and measurements
– Adds spatial location to relational model

• Multidimensional array data
– Basis of netCDF, HDF models
– Dimensions, variables, attributes

• Scientific data types
– Coordinate systems, groups, types: structures, varlens, enums
– N-dimensional grids, in situ point observations, profiles, time series,

trajectories, swaths, …

netCDF
classic

CDM
(netCDF-4)Relational HDF5GIS

6

11

NetCDF Data Models

• “Classic” netCDF model (netCDF-3 and
earlier)
– Dimensions, Variables, and Attributes
– Character arrays and a few numeric types
– Simple, flat

• CDM (netCDF-4 and later)
– Dimensions, Variables, Attributes, Groups, Types
– Additional primitive types including strings
– User-defined types support structures, variable-

length values, enumerations
– Power of recursive structures: hierarchical groups,

nested types

12

Classic NetCDF Data Model

Variables and attributes
have one of six primitive

data types.

DataType

char
byte
short
int

float
double

Dimension
 name: String
 length: int
 isUnlimited()

Attribute
 name: String
 type: DataType
 values: 1D array

Variable
 name: String
 shape: Dimension[]
 type: DataType
 array: read(), …

File
 location: Filename
 create(), open(), …

A file has named variables, dimensions, and attributes. A
variable may also have attributes. Variables may share

dimensions, indicating a common grid. One dimension may
be of unlimited length.

7

13

Some Limitations of Classic NetCDF
Data Model and Format

• Little support for data structures, just
multidimensional arrays and lists

• No nested structures or “ragged arrays”
• Only one shared unlimited dimension for appending

new data efficiently
• Flat name space for dimensions and variables
• Character arrays rather than strings
• Small set of numeric types
• Constraints on sizes of large variables
• No compression, just packing
• Schema additions may be very inefficient
• Big-endian bias may hamper performance on little-

endian platforms

14

A file has a top-level unnamed group. Each group may contain
one or more named subgroups, user-defined types, variables,
dimensions, and attributes. Variables also have attributes.

Variables may share dimensions, indicating a common grid. One
or more dimensions may be of unlimited length.

Dimension
 name: String
 length: int
 isUnlimited()

Attribute
 name: String
 type: DataType
 values: 1D array

Variable
 name: String
 shape: Dimension[]
 type: DataType
 array: read(), …

Group
 name: String

File
 location: Filename
 create(), open(), …

Variables and attributes have one of twelve primitive
data types or one of four user-defined types.

DataType

PrimitiveType
char
byte
short
int

int64
float

double
unsigned byte
unsigned short

unsigned int
unsigned int64

string

UserDefinedType
 typename: String

Compound

VariableLength

Enum

Opaque

NetCDF-4 Data Model

8

15

NetCDF-4 Format and Data Model
Benefits

New data model provides:
• Groups for nested scopes
• User-defined enumeration

types
• User-defined compound

types
• User-defined variable-

length types
• Multiple unlimited

dimensions
• String type
• Additional numeric types

HDF5-based format provides:
• Per-variable compression
• Per-variable

multidimensional tiling
(chunking)

• Ample variable sizes
• Reader-makes-right

conversion
• Efficient dynamic schema

additions
• Parallel I/O

16

Chunking

chunkedindex order

• Allows efficient access of multidimensional data
along multiple axes

• Compression applies separately to each chunk
• Can improve I/O performance for very large arrays

and for compressed variables
• Default chunking parameters are based on a size of

one in each unlimited dimension

9

17

NetCDF-4 Data Model Features

• Examples in “CDL-4”
– Groups
– Compound types
– Enumerations
– Variable-length types

• Not necessarily best practices
• Other potential known uses
• Advice on known limitations
• Potential conventions issues

18

Example Use of Groups
Organize data by named property, e.g. region:

group Europe {
 group France {
 dimensions: time = unlimited, stations = 47;
 variables: float temperature(time, stations);
 }
 group England{
 dimensions: time = unlimited, stations = 61;
 variables: float temperature(time, stations);
 }
 group Germany {
 dimensions: time = unlimited, stations = 53;
 variables: float temperature(time, stations);
 }
 …
 dimensions: time = unlimited;
 variables: float average_temperature(time);
}

10

19

Potential Uses for Groups

• Factoring out common information
– Containers for data within regions, ensembles
– Model metadata

• Organizing a large number of variables
• Providing name spaces for multiple uses of

same names for dimensions, variables,
attributes

• Modeling large hierarchies

20

types:
 compound wind_vector_t {
 float eastward ;
 float northward ;
 }
dimensions:
 lat = 18 ;
 lon = 36 ;
 pres = 15 ;
 time = 4 ;
variables:
 wind_vector_t gwind(time, pres, lat, lon) ;
 wind:long_name = "geostrophic wind vector" ;
 wind:standard_name = "geostrophic_wind_vector" ;
data:
 gwind = {1, -2.5}, {-1, 2}, {20, 10}, {1.5, 1.5}, ...;

Example Use of Compound Type

Vector quantity, such as wind:

11

21

types:
 compound ob_t {
 int station_id ;
 double time ;
 float temperature ;
 float pressure ;
 }
dimensions:
 nstations = unlimited ;
variables:
 ob_t obs(nstations) ;
data:
 obs = {42, 0.0, 20.5, 950.0}, … ;

Another Compound Type Example

Point observations :

22

Potential Uses for Compound Types

• Representing vector quantities like wind
• Modeling relational database tuples
• Representing objects with components
• Bundling multiple in situ observations together

(profiles, soundings)
• Providing containers for related values of other user-

defined types (strings, enums, …)
• Representing C structures portably
• CF Conventions issues:

– should type definitions or names be in conventions?
– should member names be part of convention?
– should quantities associated with groups of compound

standard names be represented by compound types?

12

23

Drawbacks with Compound Types

• Member fields have type and name, but are
not netCDF variables

• Can’t directly assign attributes to compound
type members
– New proposed convention solves this problem, but

requires new user-defined type for each attribute
• Compound type not as useful for Fortran

developers, member values must be
accessed individually

24

types:
 compound wind_vector_t {
 float eastward ;
 float northward ;
 }
 compound wv_units_t {
 string eastward ;
 string northward ;
 }
dimensions:
 station = 5;
variables:
 wind_vector_t wind(station) ;
 wv_units_t wind:units = {"m/s", "m/s"} ;
 wind_vector_t wind:_FillValue = {-9999, -9999} ;
data:
 wind = {1, -2.5}, {-1, 2}, {20, 10}, ... ;

Example Convention for Member Attributes

13

25

Example Use of Enumerations

Named flag values for improving self-description:
types:
 byte enum cloud_t {
 Clear = 0, Cumulonimbus = 1, Stratus = 2,
 Stratocumulus = 3, Cumulus = 4, Altostratus = 5,
 Nimbostratus = 6, Altocumulus = 7, Missing = 127
 };
dimensions:
 time = unlimited;
variables:
 cloud_t primary_cloud(time);
 cloud_t primary_cloud:_FillValue = Missing;
data:
 primary_cloud = Clear, Stratus, Cumulus, Missing, …;

26

Potential Uses for Enumerations

• Alternative for using strings with flag_values
and flag_meanings attributes for quantities
such as soil_type, cloud_type, …

• Improving self-description while keeping data
compact

• CF Conventions issues:
– standardize on enum type definitions and

enumeration symbols?
– include enum symbol in standard name table?
– standardize way to store descriptive string for

each enumeration symbol?

14

27

Example Use of Variable-Length Types
In situ observations:

 types:
 compound obs_t { // type for a single observation
 float pressure ;
 float temperature ;
 float salinity ;
 }
 obs_t some_obs_t(*) ; // type for some observations
 compound profile_t { // type for a single profile
 float latitude ;
 float longitude ;
 int time ;
 some_obs_t obs ;
 }
 profile_t some_profiles_t(*) ; // type for some profiles
 compound track_t { // type for a single track
 string id ;
 string description ;
 some_profiles_t profiles;
 }
dimensions:
 tracks = 42;
variables:
 track_t cruise(tracks); // this cruise has 42 tracks

28

Potential Uses for Variable-Length Type

• Ragged arrays
• In situ observational data (profiles,

soundings, time series)

15

29

Notes on netCDF-4 Variable-Length Types

• Variable length value must be accessed all at
once (e.g. whole row of a ragged array)

• Any base type may be used (including
compound types and other variable-length
types)

• No associated shared dimension, unlike
multiple unlimited dimensions

• Due to atomic access, using large base types
may not be practical

30

Recommendations and Best
Practices …

16

31

NetCDF Data Models and File Formats

1. Use netCDF-3: classic data model and
classic format

2. Use richer netCDF-4 data model and
netCDF-4 format

and a third less obvious choice:

3. Use classic data model with the netCDF-4
format

Data providers writing new netCDF data have
two obvious alternatives:

32

Third Choice: “Classic model” netCDF-4

• Psuedo format supported by netCDF-4 library
with file creation flag

• Ensures data can be read by netCDF-3
software (relinked to netCDF-4 library)

• Compatible with current conventions
• Writers get performance benefits of new

format
• Readers can

– access compressed or chunked variables
transparently

– get performance benefits of reader-makes-right
– use HDF5 tools on files

17

33

NetCDF-4 Format and Data Model
Benefits

New data model provides:
• Groups for nested scopes
• User-defined enumeration

types
• User-defined compound

types
• User-defined variable-

length types
• Multiple unlimited

dimensions
• String type
• Additional numeric types

HDF5-based format provides:
• Per-variable compression
• Per-variable

multidimensional tiling
(chunking)

• Ample variable sizes
• Reader-makes-right

conversion
• Efficient dynamic schema

additions
• Parallel I/O

34

Why Not Make Use of
NetCDF-4 Data Model Now?

• C-based netCDF-4 software still only in beta release
(depending on HDF5 1.8 release)

• Few netCDF utilities or applications adapted to full
netCDF-4 model yet

• Development of useful conventions will take
experience, time

• Significant performance improvements available now,
without netCDF-4 data model
– using classic model with netCDF-4 format

18

35

When to Use NetCDF-4 Data Model
• On “greenfield projects” (lacking legacy issues or

constraints of prior work)
• If non-classic primitive types needed

– 64-bit integers for statistical applications
– unsigned bytes, shorts, or ints for wider range
– real strings instead of fixed-length char arrays

• If making data self-descriptive requires new user-
defined types
– compound
– variable-length
– enumerations
– nested combinations of types

• If multiple unlimited dimensions needed
• If groups needed for organizing data in hierarchical

name scopes

36

Recommendations for Data Providers

• Continue using classic data model and
format, if suitable

• Evaluate practicality and benefits of
classic model with netCDF-4 format

• Test and explore uses of extended
netCDF-4 data model features

• Help evolve netCDF-4 conventions and
Best Practices based on experience
with what works

19

37

Best Practices: Where to Go From Here

• We’re updating current netCDF-3 Best
Practices document before Workshop in July

• New “Developing Conventions for NetCDF-4”
document is under development

• Benchmarks may help with guidance on
compression, chunking parameters, use of
compound types

• We depend on community experience for
distillation into new Best Practices

38

Adoption of NetCDF-4: A Three-Stage
Chicken and Egg Problem

• Data providers
– Won’t be first to use features not supported by

applications or standardized by conventions

• Application developers
– Won’t expend effort needed to support features

not used by data providers and not standardized
as published conventions

• Convention creators
– Likely to wait until data providers identify needs

for new conventions
– Must consider issues application developers will

confront to support new conventions

20

39

Thanks!

Questions?

40

netCDF-4 C library

Operating system

netCDF-3 C library

netCDF-3
F77

library

JVM

netCDF
Java
library

netCDF-3
C++

library

netCDF-3
Perl,

Python,
Ruby, …
libraries

F77
apps
for

netCDF-3
netCDF-3

F90
library

F90
apps
for

netCDF-3

C
apps
for

netCDF-3

C++
apps
for

netCDF-3

Perl,
Python,

Ruby, …
apps
for

netCDF-3

HDF5 C library

MPI I/O zlib, …

Java
Apps

for
netCDF

netCDF-4
F90

library

C
apps
for

netCDF-4

F90
apps
for

netCDF-4

C
apps
for

HDF5

HDF5
Java
library

Java
apps
for

HDF5

HDF5
F90

library

F90
apps
for

HDF5

Posix I/O

