

A data model of the CF metadata conventions

David Hassell¹, Jonathan Gregory^{1,2}, Jon Blower³, Bryan Lawrence¹, Karl Taylor⁴

+ the CF community

¹National Centre for Atmospheric Science (NCAS), University of Reading, UK ²Met Office Hadley Centre, U.K. ³Institute for Environmental Analytics, University of Reading, U.K. ⁴PCMDI, Lawrence Livermore National Laboratory, U.S.

• Evolved from work by Jonathan Gregory that was subsequently discussed in various CF trac tickets

- #68, #88, #95, #107

- The CF data model has been written up and is currently under review and openly available as a GMD discussion paper
 - www.geosci-model-dev-discuss.net/gmd-2017-154
 - key elements of the CF conventions are described and how they are encoded in netCDF files
 - the proposed CF data model
 - the CF data model is compared with other data models
 - a software implementation

The Unidata netCDF classic data model

- To achieve a better understanding the CF
- To write better software
- To create better enhancements to the CF

- The data model should be for CF-1.6
- The data model should be what CF is rather than what CF ought to be
- The data model should be composed of a minimal set of elements that are sufficient for accommodating all aspects of the CF
- The data model should not introduce additional elements not presently needed or used by CF
- The data model should be independent of any encoding

Elements of CF-netCDF

Elements of CF-netCDF

The CF data model

The CF data model: field

The CF data model: field ancillary and cell methodstmospheric Science

The CF data model: domain

The CF data model: cell measure

The CF data model: domain axis, coordinates ()

National Centre for Atmospheric Science

The CF data model: domain axis, coordinates ()

The CF data model: domain axis, coordinates ()

0..*

«construct»

FieldAncillary

«construct»

/∖₀..*

«construct»

CoordinateReference

0..*

«construct» AuxillaryCoordinate

«construct»

DimensionCoordinate

National Centre for

Atmospheric Science

The CF data model: coordinate reference

The CF data model

 To be useful, a data model needs to be accepted as part of CF

- A CF data model can allow software developers to design CF-compliant data processing applications
 - Using the CF data model for the software's internal data storage ought to guarantee CF-compliance
- Data model implementation: cf-python
 - https://cfpython.bitbucket.io
 - described in chapter 6 in the paper
 - The actual data model implementation is currently embedded in an API with higher-level functionality, but is in the process of being pulled out as a stand alone library

- A CF data model can provide guidance during the development of future extensions to the CF conventions
- A CF data model can be used to ensure that an enhancement to CF fits in a logically, rather than just pragmatically
- If it can not be represented by the CF data model, then
 - the enhancement could be modified so it does
 - the data model could be extended/generalized (backwards compatible)
 - the data model could be changed in backwards incompatible ways

www.geosci-model-dev-discuss.net/gmd-2017-154