Processing and Assimilation of Radar Data

Ming Xue Center for Analysis and Prediction of Storms (CAPS) and School of Meteorology University of Oklahoma mxue@ou.edu

> Workshop on Shaping the Development of EarthCube to Enable Advances in Data Assimilation and Ensemble Prediction Boulder CO, 17-18, Dec 2012

US Operational WSR-88D Radar Network

160 radars (NWS, DoD and FAA)
Vr, Z and spectrum width

Dual-pol adds
 Z_{DR}, CC and
 K_{DP}

(Source: Radar Operations Center – ROC)

Scanning Modes/ Data Volume

- Clear air mode: 5 elevations (0.5-4.5°) /10 min
- Precipitation modes: 14 elevations (0.5-19.5°) /5 mins
- Maximum data volume: Z 250m in range up to 460 km, Vr 250 m in range up to 300 km, 0.5° in azimuth, up to 14 elevations, 1 volume scan/5 min → 30 million observations/5 min for Vr and Z/radar.
- Adding spectrum width, Zdr, CC, Kdp → 90 million obs/5 min/radar.
- 160 radars \rightarrow 14 billion observations/5 min!
- 4 TB of data with 4:1 compression
- The above is the worst case scenario in reality, most radars run in clear air mode, and compression can be higher 1 order of magnitude less.

Data Processing for Assimilation

- Data processing approaches:
 - Map the data from radar coordinates to model grid points (e.g., ARPS 3DVAR)
 - Map data in horizontal to model grid, but keep on elevations in the vertical (EnKF DA studies)
 - Keep data in radar coordinates (e.g., airborne radar)
 - Further thinning to below grid resolution
- QC critical, including velocity dealiasing.
- For large grids, parallel processing required.

Remapping/Data Thinning

- Least square fitting on elevations for horizontal interpolation (88d2arps at in ARPS)
- Cressman interpolation (VDRAS, etc.)
- Data selection based on variances (PSU?)
- Data every a few grid intervals

Main Methods of Radar Data Assimilation

- 3D variational (3DVAR) method
- 4D variational (4DVAR) method
- Ensemble Kalman filter (EnKF) methods
- Ensemble/Var hybrid methods
- Semi-empirical methods, e.g., complex cloud analysis
- Multi-step retrieval/analysis methods, e.g., Single-Doppler Velocity Retrieval (SDVR), thermodynamic retrieval techniques

Realtime Radar DA as Part of the CAPS Storm-Scale Ensemble Forecasting (SSEF) for NOAA Hazardous Weather Test

- CAPS has been assimilating Level-2 Vr and Z data from all WSR-88D radars into CONUS 1-4 km models using ARPS 3DVAR/Cloud analysis in realtime for HWT Spring Experiments since 2008.
- The perturbed 3DVAR analyses were used to initialize up to 50 members of multi-model (4 models), multiphysics, multi-IC/LBC, storm-scale ensemble forecasts (SSEF) on a 4 km CONUS grid

CAPS 2 km WRF-ARW forecast v.s. observations 5 minute time intervals

Initial condition with radar data

2008 – first year to assimilate radar data

Euitable Threat Scores for 3-hourly Precip. ≥ 0.5 in

WRF 4DVAR Radar DA

- 1. Radar reflectivity assimilation Assimilating retrieved rainwater from Z;
- 2. New control variables and background error covariance

Cloud water (qc), rain water (qr);

3. Microphysics scheme Linear/adjoint of a Kessler warm-rain scheme

(Wang et al. 2012a,b)

Courtney of Junny Sun of NCAR

Mid-west squall line (IHOP) experiments

Stage4 Rainfall (mm/hr) Validated at 2002061305 Compare 3 experiments:

3DVAR

Assimilate RV and RF from 6 radars at 0000 UTC with WRF 3DVAR

3DVAR_Qv

Same as 3DVAR, but also Assimilate derived in-cloud humidity

4DVAR

Assimilate RV and RF between 0000 UTC and 0030 UTC with WRF 4DVAR

0.1 0.2 0.4 0.8 1.6 3.2 6.4 12.8 25.6 51.2

EnKF Radar DA Examples

A Mesoscale Convective System that Spawned Several Tornadoes in Oklahoma

EnKF Data Assimilation Experiments

(Snook et al. 2011, 2012, Putnam et al. 2013)

EnKF Analysis of Dual-Pol Variables

Effects of Assimilating CASA data and Mixed-microphysics Ensemble

2h Probabilistic Forecasts of Near-surface Vortices

Snook et al (MWR 2012)

Parallel EnKF Algorithms

- Dense Radar data on large high-res domains require effective parallelization
- Radar DA has so far exclusively used serial EnSRF/EnAF algorithms
- LETKF easier to parallelize, but algorithm itself more expensive
- DART and GSI-based EnSRF parallelize on state vector level but still process one observation after another – hard to scale to high data volumes

EnSRF v.s. LETKF

Fig. 5. Timing statistics of parallel EnSRF and LETKF algorithms for a global model test problem of moderate resolution (courtesy of Jeffrey Whitaker).

Domain Decomposition Strategy used by most models (WRF, ARPS, NAM, etc)

		••	•••••
 •••••	· · · · · · · · · · · · · · · · · · ·		
	· · · · · · · · · · · · · · · · · · ·		
		••	•••••

Parallel EnSRF algorithm suitable for dense radar data via domain decomposition

R is maximum localization radius

Grid is decomposed into subdomains, each domain is assigned to a shared-memory node

Each sub-domain is further divided into S1-S4 sub-patches

Sub-patches with the same label must be at least 2R apart so that obs within them don't affect common grid points and can be processed simultaneous

Loop through S1-S4 to complete obs assimilation

NSF PetaApps OpenMP/MPI hybrid Parallel EnKF Algorithm (Wang et al. 2013 JTech) Support

Data on elevations organized into batches, each batch contain no overlapping

EnKF Analysis of Many Radars

10 May 2010 OK-KS tornado outbreak

443x483x53 grid 1760 x 1920 km ~40 radars:

Vr and Z

65

60

55

50

45

40

35

30

25

20

15.

10.

5

- Surface obs, Soundings
- Profilers

Parallel multi-scale EnKF Algorithm (Wang et al. 2012)

Ensemble forecasts initialized at 0000 UTC

Probabilistic forecast (valid at 0100 UTC, 1h)

probil(unitless, Shaded)

512.0

1024.0

(km)

.20

0.0

60

512.0

1024.0

(km)

Min=-.100E-19 Max=1.00

1536.0

Probabilistic forecast (valid at 0200 UTC, 2h)

probil(unitless, Shaded)

Min=-.100E-19 Max=1.00

probil(unitless, Shaded)

Min=-.100E-19 Max=1.00

Probabilistic forecast (valid at 0300 UTC, 3h)

Min=-.100E-19 Max=1.00

probil(unitless, Shaded)

Probabilistic forecast (valid at 0400 UTC, 4h)

Min=-.100E-19 Max=1.00

Future: Small, Dense, Inexpensive Radars to Fill Low-level Data Gaps and Scan Adaptively?

Regional Testbed Data (DFW, NoN Concept)

Future Radars and Forecasting Systems

Volume scan down to ~1 min intervals → even higher data volume

Convection-Resolving Ensemble DA and Forecasting

- Need to integrate radar with all other data sources (conventional, satellite, other remote sensing platforms) multi-scale problem!
- Continuously cycled EnKF/Hybrid DA @ 5 min intervals @ 1-4 km grid spacing
- CONUS+ domain 1-4 km ensemble forecasts updated every hour (not ECMWF problem)
- Data ingest, processing, storage, distribution, analysis and visualization all very challenging, more so for fast severe weather.
- Many research questions Fuqing gave a very good list.
 - QC, model error, multi-scale issues
- CAPS alone has produced several PB of data over the past 6 years sitting inside mass storage systems – need something like Earthcube to liberate them!
- Need orders of magnitude more resources and infrastructures to achieve the above goals.

Real-time Targeted Observing & Modeling Systems (CASA – LEAD Examples)

Thanks!

