Visualizing the weather-climate connection

Brian Mapes RSMAS, University of Miami mapes@miami.edu

My data-enabled research career

- Weather-adventure start: tropical field campaigns
 - Sold as climate (model) (improvement) process studies
- Grad work: Night shift on first, scarce Unix machine
 - c code to process airborne Doppler radar. (disdain for easy grids)
 - spitting out hand-formatted ASCII PostScript was graphics
 - color only on screen, raster coordinates
- Postdoc & post-postdoc: Rode wave of 4th-gen languages
 - Fast debugging = high productivity!
 - interpreted languages (multiline command line paste)
 - with instant graphification
- Faculty: Productivity slam (from research perspective)
 - Stuck with my ruts/strengths to remain competitive/funded

My data-enabled research career

- But...
 - Teaching: UG Wx Analysis, G Applied Data Analysis
 - must text-coding skill stand btw. students and meaningful science?
 - Wearying of one-off programming, data-collections mgmt.
 - wish computer interaction time created more lasting value
 - Climate-weather split (monthly-hourly time chasm) frustrates
 - each culture seems a bit ungrounded sometimes
 - Creeping doubts if my science is truly making progress
 - craft interests me more than content, some days
- Next IT wave ready (mostly... bright side: -ware is still soft)
 - OpenDAP access mature (after past false starts)
 - Several reanalyses and satellite datasets for decades
 - Tools (IDV & RAMADDA) mature ("")
 - Thanks to Unidata's decades of vision & work (& Don & Jeff still...)

Time for a next phase?

- Time=\$: Is visualization (fundable as) science?
 - descriptive, semi-quantitative (~Synoptics)
 - Valuable, or too subjective? Much depends on *quality*.
 - Graphics & color are the "significance tests" of case work
 - Sampling of cases from statistical context, not ad hoc
- Is creating and sharing 4D data visualizations and their artifacts (stills, anims) "publication?"
 - Where? How? Reviewed? Curated? Annotated?
 - Publishing the code: a standard? a service?
 - Valid evidence and warrant for scientific discourse?
- Is spatial visualization "Education?"
 - How to evaluate communication, distortions?
 - Relationship to the rigorous math, physics, statistics?

Sort of a vision

• just a half-written proposal, to be honest

- Roles for vis in the weather-climate gap
 - Causality studies in instantaneous data (weather)
 - Climate provenance of weather events
 - Weather texture on climate anomalies
 - Cumulative shows of climate impacts by timescale

1. Weather causality in synoptic flows

• Indian monsoon depressions: why westward?

Monsoon depression tracks from the Sikka et (2006)database. al. Genesis positions are indicated by black triangles and once-daily track positions are indicated by filled circles, color corresponds to intensity stage (see colorbar).

Murthy, Boos, Hurley (Yale) 2014 QJ

Sept 2008 case during YOT

Z850, V850, TRMM 3B42

EC-YOTC 0.25deg vort

NCEP-NCAR 2.5deg vort

(Boos, Murthy, Mapes 201

NCEP-NCAR 2.5deg PV

EC-YOTC 0.25deg PV

PV centered aloft...

...although vorticity is deep 3D Surface epv - Isosurface Value: 1.5E-6 K m2 kg-1 s-1 -5.1E-6 1.2E-5 Vertical Cross Sections Ξ V absvort - Color-Shade... V 400 40 0 850 17 9 R oss Section 1200

vertical structure can be crucial and delicate

Adiabatic westward drift of Indian monsoon depressions

W. R. Boos*, J. V. Hurley, and V. S. Murthy

Department of Geology and Geophysics, Yale University, New Haven, CT, USA.

*Correspondence to: W. R. Boos, Yale University, P.O. Box 208109, New Haven, CT 06520-8109, USA. E-mail: billboos@alum.mit.edu

CHAPTER XX

WESTWARD ADVECTION OF INDIAN MONSOON DEPRESSIONS

William R. Boos, Varun S. Murthy

Department of Geology and Geophysics, Yale University, New Haven, CT 06511, USA E-mail: william.boos@yale.edu

Brian E. Mapes

Rosenstiel School of Marine and Atmospheric Sciences, University of Miami, Miami, FL 33149, USA

Linking weather to climate

Examples

① Climatological mean: Carib May-June (cf. Mei-Yu)?

» from student Teddy Allen

Whole hurricane seasons Texture on hohum monthly anomalies (ENSO)

Climatological feature:

Caribbean Early Rain Season (ERS)

TRMM climatological ERS rain rate (1998-2013)

Data Min = 0, Max = 20

background definiti

variability

climatology

l analogs prop

roposed hypotheses

case studies co

conclusions

• 2012

SUBJECTIVE CLASSIFICATION:

Annual rainband pattern and climatological accumulated rainfall visual comparison

Upper-level dynamics vs. moisture explanations?

20:00:02 GMT Latitude: 29.5 Longitude: -68.8 Altitude: -4387.9 m

2010: Accumulation of daily

2.484 GB/2.892 GB Latitude: 48.8 Longitude: -113.6 Altitude: -1307.9 m

trajectory dy a useful clim. statistic?

Linking weather to climate Examples (show n tell) ① Climatological structure: WAtl May-June (cf. Mei-Yu)?

Whole hurricane seasons
 Texture on hohum monthly anomalies (ENSO)

Click and pick: case studies of past decadal-record rain extremes

record 27h rainfall (mm)

(in TRMM 3B42 product: 3 hourly, ¼ deg)

http://www.rsmas.miami.edu/users/bmapes/HeavyRains_clickmaps/index.html

Results of your click

You chose the x,y point (486,99). Longitude 121.5, Latitude 25.125. Your point has a record rainfall (in this dataset) of over 600 mm.

The date of this event was 10 / 15 /1998. 20 UTC

Want to see satellite imagery? <u>Go here</u> \leftarrow (GIBBS)

My Fave!

DOC > NOAA > NESDIS > NCDC

Satellite Data > Global ISCCP B1 Browse System

U.S. Department of Commerce

Search NCDC

Search Field:

GIBBS: Global ISCCP B1 Browse System

(Way back in like 2012)

Select year		YEAR		<u>1974</u>	1975	<u>1976</u>	1977	<u>1978</u>	<u>1979</u>
		(# of images)		(985)	(0)	(2)	(0)	(5394)	(19361)
<u>1980</u>	<u>1981</u>	<u>1982</u>	<mark>1983</mark>	<u>1984</u>	<u>1985</u>	<mark>1986</mark>	<u>1987</u>	<mark>1988</mark>	<u>1989</u>
(10467)	(21626)	(30417)	(31581)	(17181)	(16150)	(15779)	(20175)	(19349)	(15903)
<u>1990</u>	<u>1991</u>	<u>1992</u>	<u>1993</u>	<u>1994</u>	<u>1995</u>	<u>1996</u>	<u>1997</u>	<u>1998</u>	<u>1999</u>
(17339)	(17559)	(20419)	(27079)	(26505)	(25309)	(31851)	(32264)	(36901)	(41512)
2000	<mark>2001</mark>	<mark>2002</mark>	2003	<mark>2004</mark>	2005	<mark>2006</mark>	<mark>2007</mark>	<mark>2008</mark>	<mark>2009</mark>
(42348)	(42484)	(42362)	(42376)	(43235)	(55018)	(58140)	(49085)	(48299)	(44103)
2010 (52716)	<mark>2011</mark> (54514)	<mark>2012</mark> (51902)	2013 (12257)						

1139947 total satellite images

Last Updated: Sun Apr 21 2013, 04:05:41 EDT

We need your help...

 This ISCCP B1 data has been archived for more than 20 years, but many of the data formats are no longer supported.

Better than a few images – a case study!

Persistence of pattern- how measure?

03:02:49 GMT Latitude: 57.2 Longitude: -142.9 Altitude: -1499.4 m

Linking weather to climate Examples (show n tell) ① Climatological structure: WAtl May-June (cf. Mei-Yu)?

Whole hurricane seasons
 Texture on hohum monthly anomalies (ENSO)

Whole hurricane seasons

• Dry injection? (trajectory length stats again?)

http://weather.rsmas.miami.edu/repository/entry/show/RSMAS-UM+Repository+for+atm-

ocean+data+and+its+science/The+Mapes+IDV+collection/IDV+Bundles/Displays+of+remote+datasets+%28.xidv%29/4.+Hist orical+weather+cases/Oceans/2005-2013.AtlBasinHurrSeason.compareBIGLOOPS?entryid=c0ba4af1-5575-4c87-b711-70ad9f6457dd

3.452 GB/5.245 GB Latitude: 34.7 Longitude: -33.3 Altitude: -12355.9 m

Trajectories, PW, and a climate error

• Common climate model bias pattern

WEIO: natural laboratory of moistureconvection interaction

Morphed composite: 2013-07-15 00:00:00 UTC

Moisture-limited west margin

Linking weather to climate Examples (show n tell) ① Climatological structure: WAtl May-June (cf. Mei-Yu)?

Whole seasons
 Texture on hohum monthly anomalies (ENSO)

http://www.cpc.noaa.gov/products/analysis_monitoring/ensocycle/nawinter.shtml

Telescoping timeline

- Monthly SST anomalies
 - daily OLR and u (2.5deg)
 - 3-hourly IR sat (0.1 deg) on top
 - daily OLR and u (2.5deg)
- Monthly SST anomalies

Software and process glimpse

The IDV: take a breath, get an orientation.

\leftarrow It is this

←(with a few parts more like this)

Not this \rightarrow

Don't start from raw materials! (Frustrations galore)

Rather, start from a prior user's success: examine and adjust a complex *bundle*

A plugin: my favorites, colorbars, etc.

The Mapes IDV collection

A self-updating, ever-improving IDV "plugin" maintained by Prof. <u>Brian Mapes</u> The collection's 'repository' part is at <u>http://bit.ly/Mapes_IDV</u>

Screencast introductions:

- 1. Mapes IDV collection- Why you want it (5 minutes)
- 2. <u>Mapes IDV collection- How to get it</u> (4 minutes)
- 3. <u>Mapes IDV collection- Learn to create your own displays</u> (10 minutes)

<u>The IDV</u> (Integrated Data Viewer) is a great tool, from a great organization (Unidata, part of UCAR). It is even better when you install this set of self-updating customizations (called a "plugin").

To install the IDV and the plugin, follow these directions:

The Mapes IDV collection

 \checkmark

Welcome to the "back office" of the Ma						
Please see http://www.rsmas.miami.ed	Data Sources: Fields					
for the project's front face (a perma) We	Formulas	▶ Maps				
for the project's front face (a normal we	pr wtr.eatm.2008	▶ Grids				
•	Cached data	Mapes Mapes	scalar S by vector C			
Aggregations for more convenie	units fixer for MERRA 3-h	J(x) Average acro	ss the levels of a grid at all points			
Tel IDV Bundles	3 day trajectories for June	ار») Average alon	g a grid column			
3. Attach a new dataset. You dataset.		f(x) Average along	g a grid row			
Accessing online data servers		f(x) Average alon	g a grid row			
1 Eavorite current-weather		J(x) Create Relativ	ve Humidity from Temperature, mix			
Templates at 1 time. You		<i>វ(</i> ೫) Divide				
Current weather sources		f(x) Frontogenesis	function from theta and the wind			
Current weather sources		(*) Gaussian wei	gnted hor. smootning (default N=6			
Past weather archives			Mapes suggestions			
Americas-North			QG diagnostics			
			 Vertical velocity Basic synoptic fields 			
	Schoolbouse Blizzard" 20Cv2	reanalysis	SLP Blue thick 5mb <local></local>			
		roundiyolo	\gg 2 contours thick=2 <10cal>			
			▼ Anomalies			
GES 10	deg vort PW SfcT TRMMrain	1999-now	SST anomalies bluered centered 4C <local></local>			
			Vorticity and PV			
			💥 thin abs. vort. contours <local></local>			
MERR	A.IR.TRMM		Abs Vort blue-red centered <local> Rel Vort blue-red -10 to 10 E-5 <local> PV positive values <local></local></local></local>			
			💥 Abs. Vort. 0-40 E-5 redscale <local></local>			
🕨 🔍 Subtro	pical upper jet-front in MERRA	2002-05-23	 Clouds and rain Column water 			

Conclusions

- Visualization can make the weather-climate connection clearer. Feels like knowedge (but isn't journal pubs!)
 - Caribbean early rains: upper trofs vs. PW
 - Lagrangian flow stats a useful addition to GC/climate diag?
 - Extremes: often *persistence* is key (again, via trajectories)
 - 2013 vs. 2005 hurricane season: long-traj dry injections?
 - WEIO/India monsoon bias: moisture-insensitive conv. schemes, playing out in a region with long airmass residence times?
 - great natural lab for NWP-type calibrations of this effect!
 - Climate anomalies (ENSO) may be prettier w/ texture
- Great IT ready at last! After being so long 'promising'
- Needs curation-type work and attention. What's that called?