
Summer 2016 Internship:
Mapping with MetPy

Alex Haberlie

7/29/2016

MetPy refresher
● “Collection of tools in Python for reading,

visualizing and performing calculations with
weather data.”

● “The space MetPy aims for is GEMPAK (and
maybe NCL)-like functionality, in a way that plugs
easily into the existing scientific Python ecosystem
(numpy, scipy, matplotlib).”

● Something missing from MetPy was some built in
mapping functionality, including:

○ Interpolation
○ GEMPAK-like mapping

Goal: Simplify mapping meteorological data in Python

● Wrap existing functions to reduce steps
■ Example, scipy.griddata requires:

● “Zipped” coordinates
● Observation values
● fishnet/meshgrid for x and y dimensions
● Interpolation type name

● Implement unavailable interpolation schemes
■ Barnes
■ Cressman
■ Natural Neighbor
■ More?

● Create a mapping class and process that
mimics GEMPAK functionality

○ More on this later…

Step 1 of 4: Implement Natural Neighbor

Thanks for
letting us
borrow the
books Julien!

Natural Neighbor Interpolation Terms

Circumcircle of a triangle: A circle where the three vertices
of a given triangle are on the perimeter.

Circumcenter of a triangle: The center of the circumcircle of
a triangle.

Circumradius of a triangle: Radius of the circumcircle. Also
the distance each given triangle vertex is from the circumcenter.

Delaunay Triangulation: A triangulation where none of the
input points (coordinates) are within the circumcircle of any triangle.

Natural Neighbors: For a given point, a triangle is a natural
neighbor if the point falls within that triangle’s circumcircle.

Natural Neighbor Pseudocode
For each grid point

 Find its natural neighbors, extract “edge” vertices and order them counter clockwise

 For each edge vertex (which is associated with an observation value)

 Get the circumcenters for each triangle in which the edge vertex resides

 Find circumcenter of the current edge vertex, the grid point, the edge vertex “before”; repeat for “after” edge vertex

 Generate a polygon from these points, calculate its area, and repeat until each edge vertex is visited

 The observation values are weighted by dividing each affiliated polygon area by the total area of all polygons

 Return the sum of the weighted observation values

Random points

The “temperature” is
equal to x*x / 1000

Grid 0

Grid 1

Preprocessing:

Associate each grid
with its natural
neighbor triangles
and their
circumcenters

10

2

Edge vertex 3 is a
part of the right and
the left natural
neighbor triangles,
so its polygon will
have 4 vertices:

2 vertices will be the
circumcenters of
those two triangles

The other two will be:
1) the circumcenter
of vertex 1, vertex 0,
and the grid point at
30, 30

2) the circumcenter
of vertex 1, vertex 2,
and the grid point at
30, 30

grid point

3

“Real World” test example
● ~1500 station observations from 00

UTC (evening) January 16th, 2016
● Sparse / Uneven distribution
● Plot the variable ‘air_temperature’

○ Minimum -24.1
○ Maximum 26.0

● Compare processing times between
approaches
○ Grid sizes between 50 km (7350 grids)

and 150 km (825 grids)

● Compare visualizations between
approaches

Timing results

● MetPy version is much
slower
○ As expected!

● MetPy.natural_neighbor is a
pure python implementation

● SciPy uses Cython, C, and
C++ on the backend

● The python package
‘Natgrid’ is basically a C
wrapper for copyrighted and
licensed code

MetPy

Natgrid
cubic

linear

nearest

Step 2 of 4: Implement Barnes / Cressman
● Much easier to accomplish

○ Inverse distance weighting
● Barnes weight

○ w = e (-distances / (kappa * gamma))

○ Distances between grid point and
observations within given radius

○ Kappa is based on average distance
between observations

○ Gamma is a smoothing parameter
● Cressman weight

○ w = (radius - distances) / (radius +
distances)

Step 3 of 4: Create user interface
● Build grids and interpolate points based on input data

○ Min / Max lat & lon values determine range
○ User defined or default grid cell sizes
○ More options for inverse distance schemes

■ Smoothing, Search Radius, etc.

● Return interpolated surface in correct shape, along with meshgrid/fishnet
values that can quickly be thrown at matplotlib / cartopy / other visualization
packages

● Make sure everything is tested
○ Somewhat difficult for 2D data!
○ As of this presentation, 98% test coverage

● https://github.com/ahaberlie/MetPy/tree/master/metpy/gridding
● https://github.com/ahaberlie/MetPy/blob/master/examples/notebooks/Point_Interpolation.ipynb
● https://github.com/ahaberlie/MetPy/blob/master/examples/notebooks/Wind_SLP_Interpolation.ipynb

https://github.com/ahaberlie/MetPy/tree/master/metpy/gridding
https://github.com/ahaberlie/MetPy/tree/master/metpy/gridding
https://github.com/ahaberlie/MetPy/blob/master/examples/notebooks/Point_Interpolation.ipynb
https://github.com/ahaberlie/MetPy/blob/master/examples/notebooks/Point_Interpolation.ipynb
https://github.com/ahaberlie/MetPy/blob/master/examples/notebooks/Wind_SLP_Interpolation.ipynb
https://github.com/ahaberlie/MetPy/blob/master/examples/notebooks/Wind_SLP_Interpolation.ipynb

Step 4 of 4: Create a mapping class*
● There is still a lot of code

required to create maps
● Can we implement some

GEMPAK-like functionality
in Python?

○ Especially those affiliated
with configuring map options

● Traitlets config file
● Traitlets mapping class

*Work in progress!

https://github.com/ahaberlie/MetPy/blob/Map_object/testdata/config_map.py
https://github.com/ahaberlie/MetPy/blob/Map_object/testdata/config_map.py
https://github.com/ahaberlie/MetPy/blob/Map_object/metpy/mapping/mpmap_traitlets.py
https://github.com/ahaberlie/MetPy/blob/Map_object/metpy/mapping/mpmap_traitlets.py

Step 5 of 4: Addressing performance issues
● Employ Cython to compile python-like syntax to C
● Was able to reduce the runtime by a factor of ~10 for some basic calculations
● Circumcircle radius

○ Before: 4.91 microseconds
○ After: 412 nanoseconds

● Circumcenter
○ Before: 2.3 microseconds
○ After: 271 nanoseconds

● Find Natural Neighbors:
○ Calls circumcenter and circumcircle radius
○ Reduced time by .3 milliseconds per iteration

● More work to be done!
○ Have fun Ryan

● https://github.com/ahaberlie/MetPy/blob/cythonize/examples/notebooks/Cython_demos.ipynb

https://github.com/ahaberlie/MetPy/blob/cythonize/examples/notebooks/Cython_demos.ipynb
https://github.com/ahaberlie/MetPy/blob/cythonize/examples/notebooks/Cython_demos.ipynb

Summary
● Created wrappers for scipy interpolation functions

○ Housekeeping is as invisible to the user as they want

● Implemented interpolation schemes in Python
○ Natural neighbor
○ Barnes
○ Cressman

● Developed a user interface for interpolating 2D data
○ High test coverage
○ 3D eventually?

● Began work on a GEMPAK-like mapping class
● Investigated performance enhancing cython

Thanks to everyone for the great summer!

