GIS in the Unidata Context

Ben Domenico February 2004

Legacy Stovepipe Monolithic Data Analysis and Display System Components

Typical Data Handling at a Unidata Site

Examples of Stovepipe Analysis & Display Applications

- Unidata's original versions of the <u>WXP</u>, <u>GEMPAK</u>, and <u>McIDAS</u> programs
- Datasets are delivered and decoded into local files in the required formats via the Unidata Internet Data Distribution (IDD) system
- In the Geographic Information System (GIS) world, <u>ESRI</u> products also worked with local datasets (and no IDD to deliver data from elsewhere)

Examples of Thin Client, Browser Based A&D Systems

- The PMEL (Pacific Marine Environment Lab) Live Access Server (LAS) which runs at many sites
- The <u>INGRID</u> site at <u>LDEO/IRI</u> (Lamont Doherty/International Research Institute for climate prediction)
- The Community Data Portal (<u>CDP</u>) at the National Center for Atmospheric Research (NCAR)

Client/Server Systems and Protocols

- McIDAS now can access data on remote servers using ADDE (Abstract Data Distribution Environment) protocol
- ESRI clients can access data on remote arcIMS (Internet Map Servers)
- Matlab, Kodak's IDL, Unidata IDV can access data via OPeNDAP/DODS protocol
- Open GIS Consortium (OGC) has specified WMS (Web Mapping Service), WFS (Web Feature Service), WCS (Web Coverage Service) protocols

<u>Thematic Real-time Environmental</u> <u>Distributed Data Services (THREDDS)</u>

- Integrate environmental data and tools into the world wide web
- Combine IDD "push" with several forms of pull and DL discovery
- About 25 data providers are THREDDS partners
- Connecting people, documents, and data

Client/Server Advantages

- One can perform integrated analysis of datasets that reside on several different remote servers
- User can choose desktop analysis and display software and configure capabilities locally
- The same interface can be used for analyzing datasets from different sources
- Subsetting and common format transformations can be done on the server

Client/server Challenges

- User has to know where the data reside
- Many systems have to work together
- Different disciplines have different ways of thinking about data (data models)
- It's complicated: too many protocols and conventions
 - Each client has to recognize multiple server protocols
 - Data providers have to implement several different protocols and data transformations

Oversimplified Data Model Differences

- To the GIS (solid earth) community, the world is:
 - A collection of static *features* (e.g., roads, lakes, plots of land) with geographic footprints on the Earth (surface).
 - The *features* are <u>discrete objects</u> with attributes which can be stored and manipulated conveniently in a **database**.
- To the fluids (atmosphere and oceans) communities, the world is:
 - A set of *parameters* (e.g., pressure, temperature, wind speed) which vary as <u>continuous functions</u> in 3-dimensional space and time.
 - The behavior of the *parameters* in space and time is governed by a set of **equations**.
 - Data are simply approximations to mathematical functions.

Traditional GIS view

geography network explorer

maps

search

browse

Legend

details

TIGER 2000 Map Service

Attributes in DBMS tables Highways Interstates Highways Secondary Roads **Rivers and Streams** Water Bodies Landmark Areas Military Installations Prisons Colleges/Universities Amusement Parks Cemeteries Airports **Key Geographic Locations** Military Installations Airports Shopping Centers Office Parks Parks National Parks/Forests State Parks/Forests

Features as points, lines, polygons

Atmospheric Science view

Hyperspatial structured data (HSD)

- •High dimensionality
- •Multivalued parameters (pressure contours, windspeed rendering in 3D)
- •Typically stored in file system rather than DBMS
- •(Note the shapefile-based map underneath)

Taking Advantage of Web Services for Data System Interoperability

unidata

Current projects

unidata

Advantages of Standards Approach

- Single interface for clients
- Data providers can:
 - use current services with WCS layer or wrapper
 - Move toward a single service protocol
- Usage and discovery metadata interfaces are part of the specification

Disadvantages of Standards Approach

- We aren't there yet:
 - Key standards are still evolving
 - Implementations are few and raw
 - Process is slow and cumbersome
 - Risk that vendors won't adopt them
- Legacy systems are installed, working, and have momentum
- Data models and metadata conventions still need to be agreed upon

Current Thinking

- There is no single solution for integrated analysis and display of disparate datasets at this time
- Multiple approaches are teaching us a lot (the hard way) and will guide ultimate system
- The payoff is great enough that it is crucial that we continue to work toward a solution
- Open GIS/ISO standards approach is the best hope at the moment

